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6.1 Objectives 

Determine the mechanisms which control the 
breakup, transport, mixing, and combustion of sub- 
and super-critical droplets, jets, and sprays. 

Prior      FY99     FY00    FY01 
6.1 Funding ($1,000's)      1318       150       141       141 
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The Problem 
• It is often advantageous to operate combustion 

chambers at pressures exceeding the critical 
pressure of one or both propellants. 
- Higher    chamber     pressures     lead     to     greater 

performance (Isp). 
• At supercritical pressures, the distinct difference 

between gas and liquid phases disappears. 
- Conventional   "spray   combustion"   experience   no 

longer applies. 
• It is not known how to replace conventional "spray 

combustion" models in engine design codes. 
- The lack of understanding leads to potentially large 

engine design errors. 
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Surface tension o vanishes at supercritical conditions. 
Conventional atomization and breakup parameters 
become infinite, where no data exists. 

Supercritical atomization and breakup regimes 
are unknown. 
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The Problem (con't) 
• Supercritical combustion is complicated by several 

factors not present in subcritical combustion: 
- Vanishing surface tension. 
- Equivalent gas and liquid phase densities. 
- Strongly enhanced gas / liquid solubility. 
- Different reaction kinetics. 
- Mixing induced critical point variations. 
- Property computation / singular behavior. 

• Zero enthalpy of vaporization. 
• Infinite specific heat (Cp). 
• Infinite compressibility. 

• Deeply fundamental questions such as whether 
droplets can even exist were hotly debated when this 

work began. 
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Technical Approach 

• Windowed pressure vessel operating at 
supercritical pressures. 

• Cryogenic fluid capability (LOX, LN2) 
• Capability to produce supercritical droplets 

and jets. 
• Shadowgraph, Schlieren, and Raman 

visualization of concentration fields. 
• Capability to drive flows with an acoustic 

driver 
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Payoffs 
Provide alternatives to trial and error development 

Performance: Injector related design uncertainties translate to 3-6 sec Isp 
on a booster class LOX/H2 engine. 

♦ Comparison: IHPRPT 2010 Isp objective is 13.5 sec. 
♦ 3-6 sec Isp buys 1.6 - 3.3 tons payload on the Space Shuttle 

Main Engine (SSME) worth $20-40M per launch. 
Qperabilitv and Lifetime: Injector related performance deficit required 
SSME turbopumps to be run at 105% rated power, increasing pump 
strsss 

♦ Pumps are the most expensive SSME maintenance item. 
♦ Turb. blade cracking problem is also probably inj. related. 

Instability: Injector related Saturn F-1 instability problem required over 
800 full scale tests to solve. 

♦ Present day costs: over $750K per test. Total: $600 million. 

Trial-and-error approaches risk significant cost overruns 
that can no longer be afforded 

Air Force Research Laboratory|AFRL. 

FY99 Accomplishments 

For subcritical and supercritical mixing layers: 

• Measured the growth rate for a wide variety of 
propellant combinations 

• Developed comprehensive model to predict mixing 
layer growth rates over four orders of magnitude in 
density ratio 

• Performed fractal analysis of mixing layer geometry 
• Installed and performed initial Raman measurements 

of species distributions. 
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Evolution of Mixing Layers in Transition 
from a Subcritical to a Supercritical State 

Acknowledgements: 
Bruce Chehroudi 

Rich Cohn 
Roger Woodward 

Ed Coy 

N2 into N2 
^Back-illuminated images. Chamber is at a fixed supercritical temperature 
of 300 K but varying sub- to supercritical pressures (Pcritk:ai = 3.39 MPa). Re 
= 25 000 to 75,000. Injection velocity: 10-15 m/s. Froud number = 40,000 to 
110,000. Injectant temperature = 99 to 120 K. Reduced pressures are 

shown 



I PRESSURE DEPENDENT MIXING LAYER STRUCTURE 

Nitrogen/nitrogen system (Pcr = 3.39 MPa, Tcr = 126 K) 

Tini = 128 K, Tamb = 300 K, mass flow = 350 mg/s 
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Sub- and Super-critical Mixing Layer Physics 

Chehroudi et. ed., AIAA 99-0206, AIAA 99-2489 
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Characteristic Times 

• Characteristic bulge formation time (xb) at the jet 
interface (Tseng et al.): (p,L3/o)1/2 ; p, , L, c are liquid 
density, characteristic dimension of turbulent eddy, and 

surface tension, respectively. 

• Characteristic time for gasification (xfl) (D-square law): 
D2/K; D and K. are drop diameter and vaporization 

constant. 

• A Hypothesis: If these two characteristic times (calculated 

for appropriate length scales) are comparable then an 
Interface bulge may not be separated as an unattached 
entity {onset of the gas-jet behavior at supercritical 

condition) 
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Similar equation format for different 

cases 

• Theoretical isothermal liquid spray growth rate (9a) based 
on Orr-Sommerfeld equation and stability analysis to find 

the wavelength of the most unstable interface wave: 

es=0.27[0 + (p3/p,)a5] 
• Papamoschou/Rashko theory for incompressible variable- 

density gaseous mixing layer/jet: 

ep/Rs0.l7[1 + (p3/p,)a5] 
• Dimotakis theory for incompressible variable-density 

gaseous mixing layer/jet: 

6^0.212 [0.59 + (pg/p,)0-5] 

• ALL HAVE THE SQUARE ROOT OF DENSITY RATIO AND 

THE SAME EQUATION FORMAT 
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Correlation 
• Based of the information of the previous slide the following 

"intuitive/smart" equation is proposed for both sub- and supercritical 

measured growth rates: 

e^ o.27 [ (v(v- x,)) + (P3/p,)05] 

Not« 

• For isothermal liquid case: x9 >> xb and x3 -> ao. tt then collapses to 

the isothermal spray case. 

• For subcritical the (xb/(x„+ x6)) is calculated until it reaches 0.5. After 

that it is maintained constant at 0.5 for supercritical gas-like jet. The 

transition point is found to be approximately when (ti/(xb+ xg)) = ^ 

(i.e.Tb=x3). 

Air Force Research Laboratory|AFRL ■ 

Correlation (con't) 

(-cb/(xb+ X )) is assumed to be a dominant function of the density ratio 

(pä/Pl);      i.e. T,/(v- x9)) = F(Pg/p,). 

The function F is only calculated for the N2-into-N2 case and is taken 

to be the same for other (N2-into-He ans N2-into-Ar) cases. That is, 

for example, for N2-into-He : 

9ch= 0.27 [ G(pg/Pl) + (Pg/p,n where    G(pR) = F(pR') 

pR = (Pg/pi);       PR = PR -(1 -x)pR = XpR 

X=1.0 for N2-into-N2;   X=0.2 for N2-into-He ;   X=1.2 for N2-into-Ar. 
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Empirical Correlation Results 
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—— Air Force Research Laboratory|AFRL. 
Fractal Dimension vs Reduced Pressure 

Chehroudi et. al., AIM 99-2489 
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Raman Imaging Set-up 
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Preliminary Raman Results 
• Plot contains a theoretical model, supercritical jets from AFRL 

and DLR, and gas jets 
• Self-similarity behavior is observed 

Normalized Density Defect Plot 
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Planned for FYOO 

• Complete  Raman species measurements;  reduce 
and analyze data. 

• Install acoustic drivers and investigate the effect of 
acoustic waves. 
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Summary and Conclusions 
• Structural differences in cryogenic jets have been observed below 

and above the thermodynamic critical point. 

■ Liquid-Jet like appearance occurs up to near the critical point, 
similar to second wind-induced liquid jet breakup regime. 

• Gas-jet like appearance occurs above the critical point. No drops 
are observed. 

- Supercritical spreading rate measurements agree quantitatively with 
incompressible variable density mixing layer experiments and theory. 

- Supercritical fractal dimensions agree quantitatively with gas jet 
measurements. 

New and existing mixing layer growth rate experiments and theory 
have for the first time been consolidated into a single plot as a 
function of density ratio, where the density ratio spans three orders 
of magnitude. 

A physical mechanism and correlation have been proposed to 
describe the transition from spray to gas jet behavior. 
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Summary and Conclusions (con't) 

• Preliminary analysis of Raman data indicates s^lf 
s.m,lar spreading behavior much like a g^et 


